Maryland Historical Trust Maryland Inventory of Historic Properties Number: F-7-133 | Name: 1086/WD 355 0006 The bridge referenced herein was inventoried by the Marylan of the Historic Bridge Inventory, and SHA provided the Trust February 2001. The Trust accepted the Historic Bridge Inventory received the following determination of eligibly. | d State Highway Administration as part | |--|--| | MARYLAND HISTORICAL | Eligibility Not RecommendedX | | Reviewer, OPS:Anne E. Bruder | Date:3 April 2001 Date:3 April 2001 | MHT No. F-7-133 # MARYLAND INVENTORY OF HISTORIC BRIDGES HISTORIC BRIDGE INVENTORY MARYLAND STATE HIGHWAY ADMINISTRATION/ MARYLAND HISTORICAL TRUST | SHA Bridge No. <u>1008</u> | 6 Bridge name MD 355 over Bennett Creek | |--|---| | <u>LOCATION:</u>
Street/Road name and | number [facility carried] MD 355 (Urbana Pike) | | City/town <u>Urbana</u> | Vicinity X | | County Frederic | ck | | This bridge projects ov | er: Road Railway Water X Land | | Ownership: State | X County Municipal Other | | National Regist
Locally-designa | ithin a designated historic district? Yes No _X
ter-listed district National Register-determined-eligible district
ted district Other | | BRIDGE TYPE: Timber Bridge: | | | Stone Arch Bridge Metal Truss Bridge | | | Movable Bridge: Swing: Vertical Lift | Bascule Single Leaf Bascule Multiple Leaf | | Metal Girder_
Rolled Girder _
Plate Girder | Rolled Girder Concrete Encased | | Metal Suspension | | | Metal Arch | | | Metal Cantilever | | | Concrete X:: Concrete Arch: Other:: | Concrete Slab Concrete Beam X Rigid Frame | | DESCRIPTION: | | | | |---------------------|------------|-------|----------| | Setting: Urban | Small town | Rural | <u>X</u> | #### **Describe Setting:** Bridge No. 10086 carries MD 355 (Urbana Pike) over Bennett Creek in Frederick County. MD 355 runs north-south and Bennett Creek flows east-west. The bridge is located in the vicinity of Urbana, and is surrounded by farmland. #### **Describe Superstructure and Substructure:** Bridge No. 10086 is a 2-span, 2-lane, concrete beam bridge. The bridge was originally built in 1924. The south span is a concrete beam span 40 feet long, and the north span is a concrete slab span 24 feet long. In 1984, the original concrete slab span was removed and replaced with a new concrete slab span. In addition, a new southwest wing wall was constructed sometime after 1991. The structure is 67 feet, 11 inches long and has a clear roadway width of 28 feet, 10 inches; there are no sidewalks. The out-to-out width is 30 feet, 8 inches. The superstructure consists of five (5) T-beams which support a concrete deck and steel guard rails. The beams measure 15 inches x 24 inches and are spaced 4 feet, 10 inches apart. The concrete deck, an integral part of the T-beams, is 9 inches thick and it has a bituminous wearing surface. The structure has solid concrete parapets on the concrete beam span, and steel guard rails on the concrete slab span. The roadway approaches have narrow shoulders and steel guard rails. The substructure consists of two (2) concrete abutments and a concrete intermediate pier, 40 feet from the south abutment. There are flared concrete wing walls. The bridge is not posted, and has a sufficiency rating of 73.6. According to the 1996 inspection report, this structure was in good condition with some areas of cracking, scaling, and spalling. The asphalt wearing surface has several layers of overlay, and there are minor cracks at the abutments. The concrete is in good condition. There are areas of cracking, light scaling and spalling, with spot rusting on the concrete beams. The 1924 span has areas of efflorescence, while the 1984 span has heavy efflorescence and many cracks. Also, the concrete parapets have areas of scaling and exposed aggregate. #### **Discuss Major Alterations:** In 1984, the north concrete slab span was removed and replaced with a new concrete slab span. In addition, a new southwest wing wall was constructed sometime after 1991. Inspection reports from 1991 detail the collapse of part of the southwest wing wall into the creek. The inspection report from 1996 indicates the southwest wing wall was removed and replaced, and other areas of the bridge have had repairs and patches. #### **HISTORY:** | WHEN was the bridge built: | 1924 | | | |------------------------------|--------------------|-------------------|------------------------------| | This date is: Actual | X | Estimated | | | Source of date: Plaque | _ Design plans | X County | bridge files/inspection form | | Other (specify): State Highw | vay Administration | bridge files/insp | pection form | | WHY was the bridge built? | | | | The bridge was constructed in response to the need for a more efficient transportation network and increased load capacity. #### WHO was the designer? State Roads Commission WHO was the builder? State Roads Commission WHY was the bridge altered? The bridge was altered to correct functional or structural deficiencies. Was this bridge built as part of an organized bridge-building campaign? There is no evidence that the bridge was built as part of an organized bridge building campaign. #### **SURVEYOR/HISTORIAN ANALYSIS:** | This bridge may have N | National Register significance | e for its association with: | |------------------------|--------------------------------|-----------------------------| | A - Events | B- Person | | | C- Engineering/ | architectural character | | The bridge does not have National Register significance. #### Was the bridge constructed in response to significant events in Maryland or local history? The earliest concrete beam bridges in the nation were deck girder spans that featured concrete slabs supported by a series of longitudinal concrete beams. This method of construction was conceptually quite similar to the traditional timber beam bridge which had found such widespread use both in Europe and in America. Developed early in the twentieth century, deck girder spans continued to be widely used in 1920 when noted bridge engineer Milo Ketchum wrote *The Design of Highway Bridges of Steel, Timber and Concrete* (Ketchum 1920). Although visually similar to deck girder bridges, the T-beam span features a series of reinforced concrete beams that are integrated into the concrete slab, forming a monolithic mass appearing in cross section like a series of upper-case "T"s connected at the top. Thaddeus Hyatt is believed to have been the first to come upon the idea of the T-beam when he was studying reinforced concrete in the 1850s, but the first useful T-beam was developed by the Belgian Francois Hennebique at the turn of the present century (Lay 1992:293). The earliest references to T-beam bridges refer to the type as concrete slab and beam construction, a description that does not distinguish the T-beam design from the concrete deck girder. Henry G. Tyrrell was perhaps the first American bridge engineer to use the now standard term "T-beam" in his treatise *Concrete Bridges and Culverts*, published in 1909. Tyrrell commented that "it is permissible and good practice in designing small concrete beams which are united by slabs, to consider the effect of a portion of the floor slab and to proportion the beams as T-beams" (Tyrrell 1909:186). By 1920, reinforced concrete, T-beam construction had found broad application in standardized bridge design across the United States. In his text, *The Design of Highway Bridges of Steel, Timber and Concrete*, Milo S. Ketchum included drawings of standard T-beam spans recommended by the U.S. Bureau of Public Roads as well as drawings of T-beam bridges built by state highway departments in Ohio, Michigan, Illinois, and Massachusetts (Ketchum 1920). By the 1930s the T-beam bridge was widely built in Maryland and Virginia. Maryland's roads and bridge improvement programs mirrored economic cycles. The first road improvement of the State Roads Commission was a 7 year program, starting with the Commission's establishment in 1908 and ending in 1915. Due to World War I, the period from 1916-1920 was one of relative inactivity; only roads of first priority were built. Truck traffic resulting from war related factories and military installations generated new, heavy traffic unanticipated by the builders of the early road system. From 1920-1929, numerous highway improvements occurred in response to the increase in Maryland motor vehicles from 103,000 in 1920 to 320,000 in 1929, with emphasis on the secondary system of feeder roads which moved traffic from the primary roads built before World War I. After World War I, Maryland's bridge system also was appraised as too narrow and structurally inadequate for the increasing traffic, with plans for an expanded bridge program to be handled by the Bridge Division, set up in 1920. In 1920 under Chapter 508 of the Acts of 1920 the State issued a bond of \$3,000,000.00 for road construction; the primary purpose of these monies was to meet the state obligations involving the construction of rural post roads. The secondary purpose of these monies was to fund (with an equal sum from the counties) the building of lateral roads. The number of hard surfaced roads on the state system grew from 2000 in 1920 to 3200 in 1930. By 1930, Maryland's primary system had been inadequate to the huge freight trucks and volume of passenger cars in use, with major improvements occurring in the late 1930's. Most improvements to local roads waited until the years after World War I. In the early years, there was a need to replace the numerous single lane timber bridges. Walter Wilson Crosby, Chief Engineer, stated in 1906, "the general plan has been to replace these [wood bridges] with pipe culverts or concrete bridges and thus forever do away with the further expense of the maintenance of expensive and dangerous wooden structures." Within a few years, readily constructed standardized bridges of concrete were being built throughout the state. In 1930, the roadway width for all standard plan bridges was increased to 27 feet in order to accommodate the increasing demands of automobile and truck traffic (State Roads Commission 1930). The range of span lengths remained the same, but there were some changes designed to increase the load bearing capacities. The reinforcing bars increased in thickness. Visually, the 1930 design can be distinguished from its predecessors by the pierced concrete railing that was introduced at this time. In 1933, a new set of standard plans were introduced by the State Roads Commission. This time their preparation was not announced in the Report; new standard plans were by this time nothing special - they had indeed become standard. Once again accommodating the ever-increasing demands of traffic, the roadway was increased, this time to 30 feet. The slab span's reinforcing bars remained the same diameter but were placed closer together to achieve still more load capacity. When the bridge was built and/or given a major alteration, did it have a significant impact on the growth and development of the area? There is no evidence that the construction of this bridge had a significant impact on the growth and development of this area. Is the bridge located in an area which may be eligible for historic designation and would the bridge add to or detract from the historic/visual character of the potential district? The bridge is located in an area which does not appear to be eligible for historic designation. #### Is the bridge a significant example of its type? A significant example of a concrete beam bridge should possess character-defining elements of its type, and be readily recognizable as an historic structure from the perspective of the traveler. The integrity of distinctive features visible from the roadway approach, including parapet walls or railings, is important in structures which are common examples of their type. In addition, the structure must be in excellent condition. This bridge has some areas of deterioration, and is an undistinguished example of a concrete beam bridge. #### Does the bridge retain integrity of important elements described in Context Addendum? The bridge retains the character-defining elements of its type, as defined by the Statewide Historic Bridge Context, including the original beams, abutments, pier, and parapets, however some deterioration is evident. Is the bridge a significant example of the work of a manufacturer, designer, and/or engineer? This bridge is not a significant example of the work of a manufacturer, designer, and/or engineer. Should the bridge be given further study before an evaluation of its significance is made? No further study of this bridge is required to evaluate its significance. | BIB | T T | CD | AD | UV. | |-----|-----|-----|----|-----| | DID | LIL | Лтк | AP | HT: | | County inspection/bridge files | SHA inspection/bridge files _ | X | |--------------------------------|-------------------------------|---| | Other (list): | | | Ketchum, Milo S. - 1908 The Design of Highway Bridges and the Calculation of Stresses in Bridge Trusses. The Engineering News Publishing Co., New York. - 1920 The Design of Highway Bridges of Steel, Timber and Concrete. Second edition. McGraw-Hill Book Company, New York. Lay, Maxwell Gordon 1992 Ways of the World: A History of the World's Roads and of the Vehicles That Used Them. Rutgers University Press, New Brunswick, New Jersey. Luten, Daniel B. 1912 Concrete Bridges. American Concrete Institute Proceedings 8:631-640. 1917 Reinforced Concrete Bridges. National Bridge Company, Indianapolis, Indiana. Maryland State Roads Commission 1930a Report of the State Roads Commission for the Years 1927, 1928, 1929 and 1930. State of Maryland, State Roads Commission, Baltimore. 1930b Standard Plans. State of Maryland, State Roads Commission, Baltimore. Taylor, Frederick W., Sanford E. Thompson, and Edward Smulski 1939 Reinforced-Concrete Bridges with Formulas Applicable to Structural Steel and Concrete. John Wiley & Sons, Inc., New York. Tyrrell, H. Grattan 1909 Concrete Bridges and Culverts for Both Railroads and Highways. The Myron C. Clark Publishing Company, Chicago and New York. #### **SURVEYOR:** | Date bridge recorde | ed <u>2/25/97</u> | | |---------------------|---------------------|---| | Name of surveyor _ | Caroline Hall/Ryan | McKay | | Organization/Addre | ss P.A.C. Spero & C | Co., 40 W. Chesapeake Avenue, Baltimore, MD 21204 | | Phone number (410) | - | FAX number (410) 296-1670 | 2. Mi 355 over Benner 3 Frederick Country s Ruan many SML SHID 2 has at state at lain * 2 11 L 355 OVER BENNEY 3 fieder it Course 4 ML 34 12 2 DEVALUET BEARS B MA 3-5 over Bench - Loga NE Kas; = MA 34PD 7 Upsteran I contran 8 304 3 1 F=7 13 7 2 ME 355 OVER BELLETT 3. Frederick Counsel 4. RyAN MERNY 7 2 - 1 -6 MD SHPO 7. DUNNSTICAN E EVETTON 8 404 6 h F 3 133 2 My 355 OVER BENNET 3 Frederick County 4 LyAN ME RAY 6 5 3 97 4 MA 5+PD 1 LASTICAM Parager 2 MD 355 DUER BELLET 3. Frederick Booking As Regar Mi ray 5 3-97 6. 10 Styl 7. North differen 8 6086 William Donald Schaefer Governor > Jacqueline H. Rogers Secretary, DHCD # MARYLAND HISTORICAL ## INDIVIDUAL PROPERTY/DISTRICT MARYLAND HISTORICAL TRUST INTERNAL NR-ELIGIBILITY REVIEW FORM | TRUST — $C-7-133$ | |---| | Property District Name: Bridge # 10086, MD355 over Survey Number: | | TRUST Property/District Name: Bridge # 10086, MD3550ver Survey Number: | | Site visit by MHT Staff: X noyes Name Date | | Eligibility recommended Eligibility not recommended | | Criteria:ABCD Considerations:ABCDEFGNone | | Justification for decision: (Use continuation sheet if necessary and attach map) | | Bridge # 10086 does not meet any of the Criteria for listing in the National Register of Mistorie Places. Although more than 50 | | years old, it is not associated with significant events of west of significant persons, nor does it embody the distinctive sharacterior | | gears old, it is not associated with significant total of the distinction Characterist significant persons, nor does at empody the distinction Characterist - is of a type, period, or method of construction, or the present the work of a master. Constructed in 1924 it is a standard slatorand girden bridge. It has had a section replaced and lacks integrity | | gerden bridge. It has had a sucher of | | | | | | | | Projectile | |----------------| | | | not applicable | | Date | | | | | Survey | No. | F-1-133 | |--|--------|-----|---------| |--|--------|-----|---------| T.P.S.L. ### MARYLAND COMPREHENSIVE HISTORIC PRESERVATION PLAN DATA - HISTORIC CONTEXT | I. | Geographic Region: | | | | | |----------|--|--------------|--|---------------------------------------|-------------| | | | (Anne | Eastern Shore co
Arundel, Calver
ce George's and | t, Charles, | ecil) | | <u>X</u> | Piedmont | (Balt | imore City, Balt
erick, Harford, | imore, Carroll | l, | | | Western Maryland | (Alle | gany, Garrett an | d Washington) | omery, | | II. | Chronological/Developmental Pe | riods | . | | | | | Paleo-Indian Early Archaic Middle Archaic Late Archaic Early Woodland Middle Woodland Late Woodland/Archaic Contact and Settlement Rural Agrarian Intensification Agricultural-Industrial Transi Industrial/Urban Dominance Modern Period Unknown Period (prehistor | tion | 10000-7500 B.C. 7500-6000 B.C. 6000-4000 B.C. 4000-2000 B.C. 2000-500 B.C. 500 B.C A.D.90 A.D. 900-1600 A.D. 1570-1750 A.D. 1680-1815 A.D. 1815-1870 A.D. 1870-1930 A.D. 1930-Presen historic) | | | | III. | Prehistoric Period Themes: | | IV. Historic Per | iod Themes: | · | | | Subsistence Settlement Political Demographic Religion Technology Environmental Adaption | | Agriculture Architecture, Land and Community Pl Economic (Commerce Government/Law Military Religion Social/Education Transportation | anning
cial and Indust | | | | | | *** | - C a ther the Catherine | | | V. R | esource Type: | | | · · · · · · · · · · · · · · · · · · · | • | | | Category: Structure | <u>-</u> | | | | | | Historic Environment: Ru | iral | | | | | | Historic Function(s) and Use(s | s): <u> </u> | Bridge | | | | | <u> </u> | · | - 1 | | | | | Known Design Source: | - | | | |